
FPGA ACCELERATION OF QUASI-MONTE CARLO IN FINANCE

Nathan A. Woods 

XtremeData, Inc. 
Schaumburg, IL, USA 

  email: nathan@xtremedatainc.com 

Tom VanCourt 

Altera Corporation 
Santa Cruz, CA, USA  

  email: tvancour@altera.com 

ABSTRACT 

Today, quasi-Monte Carlo (QMC) methods are widely used 
in finance to price derivative securities. The QMC approach 
is popular because for many types of derivatives it yields an 
estimate of the price, to a given accuracy, faster than other 
competitive approaches, like Monte Carlo (MC) methods. 
The calculation of the large number of underlying asset 
pathways consumes a significant portion of the overall run-
time and energy of modern QMC derivative pricing 
simulations. Therefore, we present an FPGA-based 
accelerator for the calculation of asset pathways suitable for 
use in the QMC pricing of several types of derivative 
securities. Although this implementation uses constructs 
(recursive algorithms and double-precision floating point) 
not normally associated with successful FPGA computing, 
we demonstrate performance in excess of 50× that of a 
3 GHz multi-core processor.   

1. INTRODUCTION 

The price of many financial derivative securities can be 
expressed as intractable integrals of very high 
dimensionality [1]. For example, it is not unusual today for 
the risk-neutral price of an exotic derivative security to be a 
function of 20 or more underlying assets valued at 100 or 
more points in time, yielding an integral over 2,000+ 
dimensions. Often, millions of simulations are required to 
achieve an estimate of the price to the desired accuracy. 
 Generally for integration problems of such high 
dimensionality, Monte Carlo (MC) and the related Quasi-
Monte Carlo (QMC) methods are the only practical 
solution. QMC methods have in recent years become the 
method of choice for the pricing of a large class of 
derivatives because of faster convergence compared to 
standard MC [2]. Notoriously computationally intensive, 
repetitive, and embarrassingly parallel, such simulations are 
an interesting candidate for hardware acceleration. 
 A large body of work has been compiled over the years 
demonstrating that field-programmable gate arrays 
(FPGAs) are fast and efficient devices for generating high-
quality pseudo-random numbers (see for example [3] and 
[4]). Some authors have also investigated the hardware 
acceleration of applications that utilize pseudo-random 

numbers, such as MC simulation [6]. However, we know of 
no work that investigates the efficacy of FPGAs for 
accelerating the generation of quasi-random sequences, nor 
do we know of any studies that investigate FPGA 
acceleration of QMC simulations. 
 In this paper, we present an FPGA accelerator suitable 
for the pricing of a class of financial instruments by QMC 
simulation. Specifically, we focus on the calculation of 
quasi-random Brownian motion, which according to our 
measurements can consume as much as 80% of the run-
time of a simple QMC options pricing simulation.  
 This paper is organized as follows. In section 2, we 
briefly review the QMC method. In section 3, we present a 
mathematical description of Brownian motion and present a 
simple algorithm for its calculation. This is followed in 
section 4 by a description of the hardware accelerator. We 
present hardware resource utilization and performance 
results in section 5. In section 6, we conclude with a 
discussion of potential improvements in the design and 
future work. 

2. QUASI-MONTE CARLO SIMULATION 

We begin with a short review of QMC methods. The 
following summary closely follows the introduction in [7].  

 Consider the MC estimation of an integral over the s-
dimensional hypercube (with no loss of generality) of the 
form 
 ( )

[0,1)
,

s

f dµ = ∫ u u  (1) 

 
where u = [u0, u1, … us-1]T  is a vector of uniform random 
numbers and f represents the transformation from that 
vector to the simulation output f(u), assumed an unbiased 
estimator of µ.  The form of the estimator of µ considered 
here is given by 

 ( )
1

0

1ˆ ,
n

n i
i

f
n

µ
−

=
= ∑ u  (2) 

 
where Pn = [u0,…un-1] ⊂ [0,1)S is the point set over which 
the average is taken, and the number of points n 
corresponds to the number of simulation runs.  In MC, the  
ui are independent and uniformly distributed over [0,1)S  



and produced in practice by pseudo-random number 
generators.  Then, µ̂n is unbiased and has variance σ2/n. If  
σ2 < ∞, we have from the central-limit theorem that the size 
of a confidence interval for  µ converges at a rate O(σn-1/2)  
independent of the number of dimensions, s. 

Quasi-Monte Carlo (QMC) attempts to take the points ui 
more uniformly distributed over [0,1)S than typical, 
independent, uniform random points. Loosely speaking, 
such generators are designed to minimize local deviation 
of point density from the global point density for all n, or 
discrepancy [2]. To illustrate this, Fig. 1 shows a 2-D 
projection of s-D points produced by a uniform pseudo-
random number generator (MT19937) next to projections 
of the first 2 dimensions of a quasi-random number 
generator (Sobol). Clearly the quasi-random points occupy 
the space more uniformly than the pseudo-random points, 
which tend to produce clusters and gaps. 

As a result of this improved uniformity, the asymptotic 
convergence of QMC is O(n-1 lnSn), as determined by the 
Koksma-Hlawka inequality [1].  This is significantly better 
than the convergence rate of MC. However, this fact alone 
does not explain the superiority of QMC over MC in 
financial analytics for typical values of n and s [7]. We will 
return to this discussion in Section 4 when we introduce 
the Brownian Bridge. 

3. BROWNIAN MOTION 

The value of financial derivatives, such as options, depends 
on the future value of one of more underlying assets: the 
price of several stocks, for example. The evolution of the 
each asset’s value is typically modeled as a separate 
stochastic process driven by Brownian motion [1]. A 
standard Brownian motion, W(t), is a continuous function 
of t on the interval [0,T] specified by: 
 ( )0 0W =  (3) 

 ( ) ( )( ) ( )( ) ( )( ), , 0P W t W t P W t P W t+ ∆ = + ∆ ∆ >  (4) 

 ( ) ( ) ( )~ 0, , 0W t W s N t s s t T− − ≤ < ≤  (5) 
 

For example, a standard Brownian motion can be calculated 
using the recurrence 
 ( ) ( )1 1 1i i i i iW t W t t t z+ + += + − , (6) 

 
for i=0,1,…n-1, where ti=iT/n, and z ~ N(0,1). In this paper, 
we consider the hardware acceleration of the quasi-random 
generation of the Brownian motion. To do this, we use the 
following procedure for some number of assets na and time 
steps nt, such that s = na × nt: 

1. Generate a s × 1 vector of uniform, quasi-random 
samples, u.  

2. Transform each element ui of u to a normal 
random variate, zi, and form a vector z. 

3. Generate a standard Brownian motion from z 
 

Fig. 2 depicts these steps in a block diagram. The 
implementation of each block in Fig. 2 is described in the 
next section. 

4. HARDWARE ACCELERATOR 

Many quasi-random sequences have been devised, 
including the Halton, Sobol, Faure and Neideretter 
sequences to name just a few.  We chose to implement the 
Sobol quasi-random sequence [8] because of its simplicity 
and demonstrated effectiveness in financial pricing 
simulations [1], [2], [9], [10]. 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 1.  First 2,048 points from MT19937 (top) and  
Sobol (bottom). 



To generate Gaussian variates from the Sobol points, we 
chose the inverse transform method. In this method, a 
uniform variate is transformed to a Gaussian variate by 
applying the inverse cumulative density function (or ICDF, 
defined in Section 4.2.) As far as we know, we are the first 
to consider this method in hardware. As [1] and [2] note, 
this method is the most desirable method for QMC 
simulation, for the following reasons: 

• The inverse method, unlike all rejection methods, 
does not destroy the carefully crafted uniformity of 
the quasi-random sequence. 

• The inverse method requires just one uniform 
input per normal output, and so does not increase 
the original dimensionality of the problem. 

• The inverse transform is continuous and 
monotone, enhancing the effectiveness of variance 
reduction techniques. 

 
Finally, we chose to implement the Brownian bridge 

algorithm to generate the Brownian path. The combination 
of quasi-random Sobol points and the Brownian bridge 
efficiently and effectively exploits the low effective 
dimensionality (see [7] for a definition) that many 
integrands found in financial analytics exhibit, and is the 
key to fast convergence of QMC in many cases [7], [10]. 

The remainder of this section describes the three blocks 
shown in Fig 2. Note that the pipeline structure allows 
parallel execution of all three stages of the computation. 

4.1. Sobol Quasi-Random Number Generation 

Let us define a vector x as an s-dimensional vector of 
binary words of w bits each.  Then, the nth element of the 
jth dimension of the Sobol sequence, xn

(j), as specified by 
the Antonov-Saleev variation of the Sobol sequence [11] is 
specified by the recurrence  
 ( ) ( )( )

1 ,j jj
n n kx x v−= ⊗  (7) 

 
where ⊗ denotes bit-wise XOR, k is the index of the single 
bit that differs in the Gray code of n and n-1, and  vk

(j)  is 
the kth direction vector in the jth dimension. The direction 
vectors are generated by a linear recurrence over finite 
field 2F ={0,1} 

 ( )( ) ( ) ( ) ( ) ( )
1 21 2 / 2 .j j j j j q

qi i q i qi iv a v a v a v v− −− −= ⊗ ⊗ ⊗L  (8) 

 

The coefficients ai, i=1,…q, are the coefficients of a 
degree q primitive polynomial over F2, with i > q. 
Different primitive polynomials are used for each 
dimension. Space does not permit us to discuss the 
initialization of (8), an important consideration. In our 
implementation, the initialization is performed off-line, so 
any initialization method can be supported. 
 A block diagram of our circuit that generates the Sobol 
sequence is shown in Fig 3. The pipelined design permits 
the generation of a Sobol vector u with an arbitrary number 
of dimensions, s, set at compile-time and limited only by 
available on-chip memory resources. The bit-width of each 
vector component is also a compile-time parameter, w, but 
fixed to 32 in this accelerator. To control hardware resource 
consumption, the number of dimensions computed per 
cycle, d, is a compile-time parameter, permitting the 
generation of an s-dimensional vector over c=s/d cycles. 
The circuit shown in Fig. 3 assumes that c is greater than 
the sum of the read and write latency of the state RAM. 
This is usually the case since s is typically large. If this is 
not the case, then the design implements the state RAM 
using flip-flops. Direction vectors are computed off-line 
and loaded into the ROM (loading mechanism omitted) 
before sequence generation commences. 

4.2. Inverse Cumulative Normal Density Function  

Transformation of uniform quasi-random numbers ui to 
Gaussian random numbers zi is accomplished directly 
using zi=Φ-1(ui), where Φ-1(x) is the inverse normal 
cumulative density function (ICDF). The goal is to 
evaluate the function x(u)=Φ-1(u)  defined by 

 ( )
( )x u

t dt uφ
−∞

=∫ , (9) 

cpv
count

sim
count

Gray
code

D QD Q XOR D Q
one hot
to bin

D Q

+ D Q ROM

dw x sw/d

state
RAM

dw x s/d

cpv
count

sync
delay

XOR D Q

w
accum

tc

inc

a

d

wa

accumulates
w, c times

base
addr

ra

rdwd

dout
dw

cpv = cycles per vector

n j

 Fig. 3. Block diagram of Sobol sequence generator circuit. 

Sobol ICDF Brownian
Bridge

Fig. 2.  Block diagram of quasi-random Brownian motion 
hardware accelerator. 

 



 
where φ(t)=(2π)-1/2exp(-t2/2).  As no closed form solution 
to the integral in (9) is known, one must resort to 
approximations. 
 Two popular approximations for Φ-1(x) used today in 
finance are the Acklam approximation [12] and the Moro 
approximation [13]. Both approximations employ rational 
polynomials, with Acklam’s approximation the more 
accurate with a relative error < 1.15×10-9. Because our goal 
was to develop a single, general purpose accelerator, we 
opted for the more stringent error criterion, and set as a goal 
an approximation at least as accurate as Acklam’s. 
 Our implementation exploits the knowledge that the 
function is fed by a 32-bit uniform quasi-random integer 
and is therefore valid for inputs in the interval [2-32, 1). 
Since the normal ICDF is anti-symmetric about 0.5, it 
suffices to consider the interval [2-32, 0.5]. We split this 
interval into two disjoint regions, Rc ⊆ [2-m, 0.5), called the 
central region, and Rt ⊆ [2-32, 2-m), the tail region, and 
handle the input 0.5 as a special case. 
 We subdivide the central region into m octaves on 
power of two boundaries. Finally, we subdivide each octave 
into 2r segments of equal length, so that the jth segment of 
the ith octave selects the region 
 ( , ) ( 2) ( 2)[2 , 2 ( 1) )i j i i

cR j j− + − +⊆ + ∆ + + ∆  (10)  
 

where ∆=2-(i+2+r), i=0,…,m-1, and j=0,…,2r-1. For each 
segment, we fit a minimax polynomial of order kc. For the 
tail region, we first transform the input x using  
 ( )( )ln lny x= −  (11) 

 
and then fit one minimax polynomial in y of order kt. A 
block diagram of the circuit that computes the ICDF is 
shown in Fig. 4. This circuit approximates the ICDF with a 
relative error < 10-10. 

The compile-time parameters of the circuit that achieve 
this accuracy are m = 11, r = 6, kc = 3, and kt = 7. Except 
for range reduction, all computations are carried out 
internally using double-precision floating-point arithmetic.  
 The range reduction, central calculation, and result 
merge units are fully pipelined. The result merge unit 
guarantees that the ICDF outputs its results in the same 
order in which the inputs arrived. If this is not possible (e.g. 
because a tail calculation result is required but not 
available), the unit stalls. The central calculation unit can 
compute one kc-order polynomial per cycle. To reduce 
hardware resources consumed, we exploit the fact that the 
tail calculation is required, on average, only once for every 
2,048 cycles, and implement this calculation in a multi-
cycle manner using one floating-point logarithm [14], 
adder, and multiplier. Furthermore, the ICDF design is 
multidimensional and can convert d separate, uniform 
inputs to d Gaussians in parallel, with d a compile-time 
parameter. We require only d/2,048 tail computation units 

and d/4 coefficient ROM units. In the former case, this is 
accomplished by arbitrating for the tail calculation unit, and 
in the latter case, this is accomplished by double-clocking a 
dual-port ROM for each of the kc+1 coefficients. Double-
clocking is optional at compile-time, and if not selected, 
d/2  coefficient ROM units are required. 

4.3. Brownian Bridge 

The recurrence in (6) generates a Brownian path causally. 
However, we may generate the points along a Brownian 
path in any order by simply drawing the points from a 
distribution conditioned on the points already generated. 
Since the statistics of the path are Gaussian, the conditional 
mean and variance can be easily computed in closed form. 
 The Brownian Bridge (BB) is a divide-and-conquer 
algorithm that constructs a Brownian path by successively 
computing a point in the path between two previously 
computed endpoints [1]. The algorithm computes the end-
point of the path first, then the mid-point of the path, 
followed by the mid-points of the two sub-paths to the left 
and to the right, and so on, generating all required 
intermediate points in an ever-refining manner. Somewhat 
surprisingly, this recursive decomposition is more amenable 
to FPGA acceleration than the incremental algorithm of (6), 
since it exposes parallelism that the FPGA can exploit. 
 Let us define a known point on the left, W(ti), and a 
known point on the right, W(ti+1). Then, a point W(t) with 
ti <  t  < ti+1 is given by 
 ( ) ( ) ( )1( ) 1i iW t aW t a W t bZ+= + − +  (12) 

 

where 1

1

i

i i

t t
a

t t
+

+

−
=

−
, 

( )( )1

1

i i

i i

t t t t
b

t t
+

+

− −
=

−
, and Z is a draw 

from a normal distribution with zero mean and unit 
variance. Each bridge calculation requires a new draw Z. 

Range
Reduction

Central Region
Evaluation

Tail Region
Evaluation

Request
Arbiter

FIFO

FIFO
FIFO

Merge

Coeff
ROMs

Response
Demux

din dout

a d

 
Fig. 4.  Block diagram of ICDF circuit. 



The coefficients a and b do not depend on Z or W(ti) and so 
can be stored in a table of at most nt entries, where nt  is the 
number of equally spaced discrete time steps determined at 
compile time.  
 Pseudo-code describing the operation of the hardware 
BB is shown in Fig 5. The pseudo-code assumes a pipelined 
floating point unit (FP) computing midpoint values using 
(12) and a queue that holds intervals that have not yet been 
scheduled for processing in the FP unit. Although not 
shown in Fig. 5, this implementation does not enqueue or 
evaluate intervals a single discrete step in length. Fig. 6 
illustrates the major hardware elements that implement the 
algorithm in Fig 5. 
 The FP pipeline is built using experimental tools [15] 
that generate RTL code for entire expressions at a time, 
rather than stringing together function blocks representing 
primitive operations. By fusing multiple operations, these 
tools exploit FP-specific optimizations that generate FP 
blocks with the following properties: 

• Logic utilization and latency as low as 50% of 
block-based design, and 

• One result per cycle throughput. 
 
Reduced logic per pipeline frees logic resources that can be 
used to build more parallel pipeline units. 

 Initially, the FP pipeline is empty. The initial interval is 
sent to the FP pipeline. The BB circuit then idles until the 
midpoint value of the initial interval emerges from the FP 
unit. Then, two sub-intervals are available for computation: 
the left-mid and mid-right subintervals. These are sent to 
the FP unit on successive cycles, and the BB circuit idles 
until the FP latency elapses. Then, on two successive 
cycles, the left and right sub-interval midpoints emerge 
making four new sub-intervals available for computation, 
and so on. The FP pipeline fills completely in log2 L 
generations of interval subdivision, where L represents the 
FP pipeline latency in cycles. Once filled, the controller 
generates one na-dimensional point per cycle until all 
points have been computed. The FP pipeline has fixed 
latency, so one controller can manage multiple pipelines. 
As a result, steady state operation generates na floating 
point values per cycle, limited only by the capacity of the 
FPGA fabric. 

Until the pipeline fills, the BB controller evaluates 
interval midpoints strictly in decreasing order by interval 
size, consuming a new vector Z of na Gaussian variates for 
each midpoint. As (12) shows, longer intervals have larger 
b coefficients, so the earlier draws from the Gaussian 
variate generator have the larger effect on the overall shape 
of the path. To understand the significance of this, one 
must know two facts. First, the lower dimensions of the 
Sobol sequence, used to produce the earlier Gaussian 
draws, are more uniform (i.e. have lower discrepancy) than 
higher dimensions for finite n [2]. Second, the values of 
many derivative securities are determined more by the 

overall shape of the path than by its fine structure [1]. 
Thus, the combination of the Sobol sequence and the BB 
implements a strategy whereby the most uniform quasi-
random points are applied to those dimensions which 
contribute the most to the variance of the estimate of the 
price [7]. (More complex queuing logic could force all 
intervals to be evaluated in decreasing order by length, but 
the additional complexity and hardware cost have not been 
justified.) This is another reason for superior convergence 
of QMC compared to MC in this implementation. 

The BB generates points in non-sequential order, so a 
pathway should not be sent to a client application until it is 
completely computed. In practice, results would probably 
be double-buffered, so one pathway could be accessed by 
the application while another is being computed. 

5. RESULTS 

Our accelerator targeted the Altera Stratix III EP3SE260-3 
FPGA. The accelerator was described using the VHDL 
hardware description language and synthesized, placed, 
and routed with Altera’s Quartus II v7.2 software.  

The various hardware resources consumed by the 
accelerator are shown in Table 1, for a system that handles 
nt=512 time steps and na=8 assets in IEEE 754 double-
precision floating point. The design consumes roughly 
86% of the logic resources, 78% of the DSP blocks, 33% 
of the M9K memories, and 60% of the M144K memories 
in the FPGA. The maximum clock frequency achieved for 
the entire design was 110 MHz, but we anticipate a 2x 

Floating-point
pipeline (FP)

Floating-point
pipeline (FP)

Queue of intervals
not yet computed

Floating-point
pipeline (FP)

Initial
interval

Gaussian
random
values

Controller

Results

Fig. 6.  Diagram of BB circuit with na FP pipelines 

send initial interval to FP pipeline; 
work_in_progress = TRUE; 
while (work_in_progress)  
  if (result available at FP pipeline) { 
     report result's position and value; 
     use result as new midpoint; 
     send new left subinterval to FP pipeline; 
     enqueue new right subinterval; 
  } else if (queue is not empty) { 
     remove one interval from queue; 
     send that interval to FP pipeline; 
  } else if (FP pipeline is empty)  
     work_in_progress = FALSE; 

Fig. 5. Pseudo-code for iterative construction of BB 



improvement in Fmax with further optimizations. We 
compare the performance of our hardware accelerator to 
the performance of a C++ implementation provided by a 
major investment bank, running on a modern x86 
processor, an Intel dual-core Xeon Woodcrest running at 
3 GHz. We measured the execution time to produce na=8 
Brownian pathways of nt=512 time steps each. The 
theoretical execution time of the hardware accelerator was 
determined from cycle-accurate simulation combined with 
post-place and route timing results. The results are shown 
in Table 2. The performance ratio is defined as the 
execution time of software divided by the execution time 
of the hardware accelerator for the same task. We achieve 
a performance improvement over 50×, and we anticipate 
higher performance on longer bridges (projected to 70× for 
nt=1024), because of the lower relative contribution of 
startup time to total time for computing the bridge.  Since 
all Brownian pathways are independent, it is possible to 
increase FPGA performance linearly by simply increasing 
na to exploit the resources on larger FPGAs. 

6. CONCLUSIONS 

We present a hardware accelerator that generates multiple, 
quasi-random, standard Brownian motions suitable for the 
acceleration of quasi-Monte Carlo simulation of financial 
derivatives. We are not aware of previous FPGA 
implementations of the Sobol quasi-random generator, the 
Gaussian ICDF, or the Brownian Bridge algorithm, so we 
believe these to be novel uses of FPGA computation.  

The accelerator achieves a speedup of over 50× 
compared to a single thread running on a modern multi-
core x86 processor for this task. We know of additional 
optimizations that could increase this speedup 
significantly, by improving the clock rate of the FP 
pipeline and by reducing its latency (therefore reducing 
idle cycles during startup). Furthermore, we expect the 
performance of the accelerator to increase linearly as 
FPGA devices increase in density, due to increases in the 
number of asset values na computed in each cycle, whereas 
our preliminary measurements suggest that one can expect 
sub-linear increases in performance as the number of cores 
increases on an x86 processor. Therefore, it is reasonable 
to expect the performance advantage of FPGAs over multi-
core CPUs to increase in the future for this task. 

REFERENCES 

[1] P. Glasserman, Monte Carlo Methods in Financial Engineering, 
Springer, 2004. 

[2] P. Jackel, Monte Carlo Methods in Finance, Wiley, 2002. 
[3] I. Dalal and D. Stefan, “A hardware framework for the fast 

generation of multiple long-period random number streams,” Proc. 

ACM/SIGDA 18th  Int. Symp.  Field-Programmable Gate Arrays, pp. 
245-254, Feb. 2008. 

[4] D. Thomas and W. Luk, “FPGA-optimised high-quality random 
number generators,” Proc. ACM/SIGDA 18th  Int. Symp. Field-
Programmable Gate Arrays, pp. 235-244, Feb. 2008. 

[5] D. Lee et al., “A Gaussian noise generator for hardware-based 
simulations,” IEEE Trans. on Comp., vol. 53, no. 12, Dec. 2004. 

[6] M. Gokhale et al., “Monte Carlo radiative heat transfer simulation,” 
in Proc. of Field Programmable Logic and Applications, Springer, 
pp. 95-104, 2004. 

[7] P. L’Ecuyer, “Quasi-Monte Carlo Methods in Finance,” Proc. of 
Winter Simulation Conf., pp. 1645-1655, 2004. 

[8] I. M. Sobol’, “Uniformly distributed sequences with an additional 
uniform propoerty,” USSR Journal of Computational Mathematics 
and Mathematical  Physics, vol 16, pp. 1332-1337, 1976. 

[9] P. Ackworth et. al, “A comparison of some Monte Carlo and quasi 
Monte Carlo methods for options pricing,” Monte Carlo and Quasi-
Monte Carlo Methods, P. Hellekalek, G. Larcher, H. Niederreiter, P. 
Zinterhof, eds., Springer-Verlag, Berlin, pp. 1-18, 1996. 

[10] R. Calfish et al, “Valuation of mortgage-backed securities using 
Brownian bridges to reduce effective dimenstion,” Journal of 
Computational Finance, 1997, 1:27-46. 

[11] I. A. Antonov and V. M. Saleev, “An econominal method of 
computing LP tau-sqeuances,” USSR Journal of Computational 
Mathematics and Mathematical  Physics, vol. 19, no. 1, pp. 252-
256, 1980. 

[12] P. J. Acklam, “An algorithm for computing the inverse normal 
cumulative distribution function,” University of Oslo, Statistics 
Division, June 2000. 

[13] B. Moro, “The full monte,” Risk 8(Feb), pp. 57-58, 1995. 
[14] J. Detrey and F. de Dinechin, “A parameterizable floating-point 

logarithm operator for FPGAs,” Conf. Rec. of the 39th Asilomar 
Conf. on Signals, Syst., and Comp., Oct. 2005, pp.1186-1190. 

[15] M. Langhammer, “Floating-point Datapath Synthesis for FPGAs,” 
Proc. Of 2008 Int. Conf. on Field Programmable Logic and 
Applications, submitted. 

 

 

Table 1.  Hardware Accelerator Resource Usage. 
 

Unit ALM FF M9K M144K DSP blk 
Sobol      315     464 15 29 0 
ICDF 51,584 72,270 211 0 47 
BB 36,066 55,896 58 0 28 

Total 87,965 128,630 284 29 75 
 

Table 2.  Performance Comparison Results. 
 

Time steps CPU (µs) FPGA (µs) Perf. Ratio 
512 383 6.7 57× 

 


